Ontology-Driven Software Development
in the Context of the Semantic Web:
An Example Scenario with Protégé/OWL

Holger Knublauch
Stanford Medical Informatics, Stanford University, CA
holger@smi.stanford.edu

Abstract

Recent efforts towards the Semantic Web vision have lead to a number of stan-
dards such as OWL and Web Service languages. While these standards provide a
technical infrastructure, software developers have little guidance on how to build
real-world Semantic Web applications. Based on a realistic application scenario,
we present some initial thoughts on a software architecture and a development
methodology for Web services and agents for the Semantic Web. This architecture
is driven by formal domain models (ontologies). The methodology applies best
practices from agile development methodologies, including systematic tests, short
feedback loops, and close involvement of domain experts. We illustrate how these
techniques can be put into practice using the modern Semantic Web development
tool Protégé, and indicate future possibilities.

1 Introduction

The goal of the Semantic Web initiative [3] is to provide an open infrastructure for
intelligent agents and Web Services. This infrastructure is based on formal domain
models (ontologies) that are linked to each other on the Web. These linked ontologies
provide the applications with shared terminologies and understanding. The W3C has
recently finalized the Web Ontology Language (OWL) [10] as the standard format
in which ontologies are represented online. Similar standardization efforts such as
SWRL ! and SCL ? are well underway.

While a lot of effort is being devoted to defining these languages and appropriate
tool support, work on development methodologies for Semantic Web applications is
still in its infancy. As an initial effort, W3C has recently started a working group to
explore best practices and design patterns for OWL 3. However, this group focuses
on ontology construction and does not help with more general issues on software ar-
chitecture, use of ontologies in applications, and software testing. Most non-trivial

"http://www.daml.org/2003/11/swrl
Zhttp://cl.tamu.edu
Shttp://www.w3.org/2001/sw/BestPractices/

www.manaraa.com

Semantic Web applications will consist of conventional components developed in lan-
guages such as Java, and comprehensive methodologies are needed that integrate these
components in a Semantic Web context. Also, while the potential benefits of ontolo-
gies in general-purpose software technology have been widely discussed [5], ontologies
have not achieved a major breakthrough yet.

In this paper we will explore some issues of developing software for the Semantic
Web. Since this field is rather new, and few people have experience in the develop-
ment of real-world systems, we believe it is important to collect example application
scenarios that illustrate common problems and challenges. Such examples can lay out
an application-oriented grounding for work on methodologies. We will present a re-
alistic example scenario from the tourism domain (Section 2), and suggest a software
architecture for applications of this kind (Section 3). From this architecture we will
derive some development guidelines (Section 4), before we discuss lessons learned and
future work (Section 5).

2 A Semantic Web Example Scenario

This section introduces an example Semantic Web scenario from the tourism domain.
The basic idea is that providers of travel-related services such as holiday activities
and accommodation advertise their services on the Semantic Web, so that intelligent
agents can find them dynamically. These agents could then make suggestions on
vacation planning and make travel arrangements in consideration of user preferences.

As illustrated in Figure 1, the Semantic Web infrastructure for these agents would
be based on a few core ontologies. For example, a travel ontology could be de-
fined by a standards body of the tourism industry, whereas a geography ontology
could be provided by a government agency. Both ontologies would be published on
fixed URI’s as OWL files. The core tourism ontology would define concepts such as
ActivityProvider to link an Activity with a ContactAddress. There could be a set
of subtypes of activities such as BungeeJumping or Caving, and these could be catego-
rized into types like AdventureActivity. Based on the rich expressiveness of OWL, it
is furthermore possible to define classes by their logical characteristics. For example,
a class BackpackersDestination could be defined as a destination that offers budget
accommodation and some adventure activities. These defined classes allow reasoners
to automatically classify existing domain objects into matching categories [7].

A base ontology like the travel ontology would allow providers to publish metadata
about their services and contact information. Providers would instantiate the classes
from the ontology and publish the resulting individuals as OWL files on their web sites.
Then, a Semantic Web service specialized in vacation planning could send out a crawler
agent to collect the available activities. If a user then asks for an exciting adventure
destination, the agent could exploit the categorization of the ontology hierarchy to
find suitable matches, and call auxiliary Web Services via the links into the geography
ontology.

While some of this functionality could also be implemented with a traditional
client-server web application, the main benefit of the Semantic Web is its open ar-

www.manaraa.com

Travel Ontology

ActivityProvider

providesActivity| hasContact

’ Activity ‘ ‘ContactAddress‘

AdventureActivity

‘ HeliBungeeJumping ‘

Travel Extension Ontologies

Figure 1: Ontologies from an example Semantic Web scenario.

chitecture and semantic richness. Providers of activities can not only publish their
metadata dynamically, but they can also define their own specializations of the de-
fault classes. For example, an ontology module could define HeliBungeeJumping as
a subclass of BungeeJumping, and put semantic restrictions on this class to describe
its characteristics. Then, if an agent searches for bungee jumping facilities it would
also find the instances of the subtypes, and also learn that jumps from a helicopter
are traditionally more expensive than conventional jumps, that they involve aerial
sightseeing, etc.

3 Architecture of a Semantic Web Application

Ontologies such as those described in the previous section can be exploited by differ-
ent Semantic Web applications. Figure 2 illustrates the software architecture of an
application that finds appropriate holiday destinations for a customer. The function-
ality of this application is made available to software agents through a Web Service
interface, and to end-users through a conventional Web browser interface. Input to
these services is in both cases a collection of data objects about a customer (e.g.,
age, personal preferences, hobbies, budget). The output is a list of suitable vacation
destinations together with a list of suggested activities and corresponding contact ad-
dresses. These input and output data structures are formally represented in terms of
OWL ontologies, so that external agents can correctly use the service.

Much of the application logic itself is implemented in a conventional object-oriented
language such as Java. For example, the system must manage data bases, sessions, and
the user interface. The application needs to represent the objects that are exchanged

www.manaraa.com

HeliBungee.owl | | ... ActivityX.owl E B

Semantic Web Layer

n :
2l Travel.owl Customer.owl [« Web Service End-User
2 H H | Interface Interface
s (] e ——] S— - WSDL JSP
] e i (wsbb) (SP)
g Activity.java Customer.java i i

§ O : v v

(0] B —

| i

®

£) , Web Service, Control Logic

g Dynamic Object Model (Jena) (Java Code)

Reasoners (OWL DL, SWRL, ...)

Figure 2: Architecture of an example Semantic Web Application.

between the application and other services or the user interface as Java objects. A
typical implementation would employ an OWL parsing library such as Jena 4 for that
purpose. Jena provides a dynamic object model in which OWL classes, properties
and individuals are stored using generic Java classes like OntClass and Individual.
While such an object model allows programs to operate on arbitrary OWL models,
they are inconvenient to handle. References to ontology objects are established only
through names (i.e., Strings), making code hard to maintain and test. Also, as the
ontology evolves at design time, existing code may run out of synch. If an ontology is
known to the application beforehand, it is better to reflect the ontology concepts with
custom-tailored Java classes, so that the ontological structure is exploited at compile-
time. This also allows programmers to attach methods to these classes, leading to
cleaner object-oriented design patterns.

In addition to the rather simple input/output data structures, ontologies are also
used to represent the background knowledge that is needed by the application to
fulfill its task. There are some core ontologies that define the basic structure of
this knowledge by means of base classes. These base classes can be extended and
instantiated arbitrarily by external ontology providers on the Semantic Web. While
the base classes can and must be hard-wired into the executable system, the knowledge
encoded in the external ontologies can only be used by generic reasoning engines such
as Description Logic classifiers [1] or rule execution engines. We argue that most
Semantic Web applications will have a similar architecture around core ontologies,
external ontologies, control components, and (user) interfaces.

‘http://jena.sourceforge.net

www.manaraa.com

4 Ontology-Driven Software Development

An important conclusion from the architecture from the previous section is that Se-
mantic Web applications consist of two separate but linked layers: The Semantic Web
Layer makes ontologies and interfaces available to the public, whereas the Internal
Layer consists of the control and reasoning mechanisms. While the latter components
can reside inside a “black box”, the artifacts in the Semantic Web Layer are shared
with other applications, and must therefore meet higher quality standards than the
internal components. Also, the models in the Semantic Web Layer are used to con-
trol the internal behavior, in particular the outcome of reasoning algorithms. As a
result, the code inside the internal components may be of relatively small size, and
has to meet lower quality standards than the externally visible modules. Much of
the internal components can be generated from the higher-level models and consists
of generic libraries that are simply used out of the box. All this suggests that agile
development approaches such as eXtreme Programming [2] are perfectly sufficient for
the development of the application’s internal parts.

Much more effort has to be spent with the system’s ontologies. These ontologies
must be consistent, generally useful and formally correct. Also, they must be extensi-
ble and may become very large. In order to ensure a high quality of these ontologies,
developers can exploit the formal foundation of OWL on Description Logics [1] at
design time to find inconsistencies, to maintain complex subclass relationships along
multiple axes, and to reveal hidden relationships [9].

Modern ontology development tools such as Protégé with the OWL Plugin [8] al-
low users to exploit these services conveniently, and provide intelligent guidance to
find mistakes similar to a debugger in a programming environment. As illustrated in
Figure 3, the user only needs to press a “classify” button to get the correct classifica-
tion of classes and to detect inconsistencies. Furthermore, Protégé serves as a rapid
prototyping environment in which ontology designers can instantly create individuals
of their ontology and experiment with semantic restrictions. The system is able to
generate user interfaces that can be further customized for knowledge acquisition in
a particular domain [6].

In addition to supporting ontology designers, Protégé also has an open architec-
ture that allows programmers to insert arbitrary components into the tool. This can
be exploited during the development of Semantic Web applications: developers can
package the implementation of the application as a Protégé plugin and immediately
test how the system behaves in response to ontology changes. The Protégé OWL
Plugin even provides an open testing framework in which code similar to JUnit test
cases can be executed at any time. Another feature of Protégé is code generation: the
system takes an OWL ontology and creates corresponding Java classes from it.

To summarize, the development of Semantic Web applications with a tool such
as Protégé is driven by ontologies. Ontologies can be developed by domain experts,
and these experts have direct control over the behavior of the executing system and
some aspects of the implementation. Similar to agile methodologies like eXtreme
Programming, feedback is available frequently since the domain models rapidly lead
to executable systems. Best practices from agile methodologies can be employed

www.manaraa.com

travel Protégé 2.1.1 (file:\C:\projectslowlitravel. pprj, OWL Files)

Project Edit Window OWL Code Help
DEE@ - BB =5 AR B0 &0 ® B[
r (Cj) OWLClasses r@]] Propatties r T Forms r\@}) Individuals r(' 3) Matacata |
Subclass Relationship <] [[[)4|5ubciass Relationship o @ MationalPark (type=owl.Class) +-FT
= = = — -
Assetted Hierarchy (L) x 2 o@ | Inferred Hierarchy ,'Jf) 3 rName ‘ | Annotations [st '.p x I
LS owl:Thing <) ol Thing] " Froperty | alue [Laral|
(2 @Accummudauun @ @Accummudalmﬂ |Nat|nna\Park ‘ b
@ BedAndBreakfast @ BedAndBreakfast B CETE
@Budgemucummuuatmn (2 @ BudgetAccommodation
@Campgruunu @Campgruunu
@ () Hotel & () Hotel
@AccummudauunRalmg @Accummudalmﬂﬁaung
G*@Aclwny 9'@Act|w1y =
(C) Contact (D) Contact P o E
@ @Ek)_e)stmalmn [@E_e)slmauun Asserted [Infamed | [PI[] Praper D] [Gf NG 1
C) BackpackersDestination @ (S BackpackersDestination " 2y @ [0] hasAccommodation (muitiple 2] [
Assetted Conditions Ui (E g ° &
(9 Beacn (€ MatioralPark CRCE R Y | @ (D] hasActivity (rultiple Activity
@ BudgetHotelDestination @ Beach NECESSARY & SUFFICIENT @ hasPan (multiple Destination)
@FamnyDeslmauun @ BudgetHotelDestination NECESSARY
@QuletDestmauun @ FamilyDestination @HuralArea
@ RetireeDestination @ QuietDestination @)3 hasAccommodation Campground
L2 @HuralArea (2 @ RetireeDestination @)3 hasActivity Hiking
@Farm\and @Capnal o
(E) MationalFark 9 (©) Ruraltrea | [v] 4
L2 @UrhanArea 8Farmland
@ (Tl ity C) MationalPark (B it T
- joint L7 % 8
@ Capital (2 @ UrbanArea] D '.@ ﬁ \; ﬁ
() Town @ () Gity = | | =
" #4 ” | & ® @) Logic View () Properties Yiew
Class | Changed superclasses
@ Campground Moved from Accommodation to Budgethccommodation
3 @Capita\ Added RetireeDestination
~ @Nanona\Park Added BackpackersDestination
E () Safari Inconsistent
[C#C) Classification Results

Figure 3: A screen shot of the Protégé ontology development environment.

to build high-quality domain models. In particular, ontologies can be developed in
pairs, so that they are instantly peer-reviewed. To ensure that domain models lead
to efficient implementations, domain experts may pair with programmers. Another
important aspect of agile approaches is systematic testing. The formal backing of
languages like OWL can be employed for testing both at design-time and at run-time.
For example, the logical definitions from an OWL class can be exploited to verify
invariants on objects similar to Design-by-Contract at run-time.

5 Discussion and Future Directions

Our example scenario highlights the importance of high-level domain models in soft-
ware development in a Semantic Web context. This approach is remarkably similar
to recent developments in mainstream software technology. The Model-Driven Archi-
tecture (MDA) [4] movement initiated by the OMG explores ways on how to better
integrate high-level domain models into the development cycles of conventional soft-
ware. A central idea of MDA is to employ domain models in languages like UML, and
to have code generated from them for specific applications and platforms. Ontology-
Driven Software Development as described above follows a very similar approach, but
applies these ideas in a much more extreme way: domain models are not only used for
code generation, but they are used as executable artifacts at run-time. Therefore, it is
natural to assume that progress in the field of developing Semantic Web applications

www.manaraa.com

could be applied to MDA as well. Also, progress in MDA technology and tools may
be fruitful for the Semantic Web community.

So what can the ontology community learn from MDA? A major achievement of
MDA is the grounding of the various separate modeling language standards under
the umbrella of a single meta-metamodel called MOF [4]. MOF will support tool
inter-operability and standardize model translations. The OMG’s recent efforts in
defining a mapping between OWL and MOF/UML 5 can become a cornerstone in
bringing the fields and tools much closer together. Also, MDA advocates suggest that
no single modeling formalism (such as UML class diagrams) is sufficient for domain
modeling. Instead, domain-specific languages are selected depending on the task and
the expertise of the domain modelers. The ontology community has made significant
advances with the standardization of OWL, but OWL may not be the best modeling
language for everyone. Instead, domain experts may prefer domain-specific languages
or “intermediate representations” that are then translated into the details of OWL or
SRWL or any other relevant language. Parts of these translations can be taken over
by editing tools, by providing simplified views of lower-level modeling constructs. A
common grounding of metamodels would help to formalize these views.

And what can the Software Engineering community learn from the Semantic Web?
Domain models should not be regarded as intermediate artifacts that are only used for
generating code and then put safely inside the drawers of a company’s archive. Instead,
domain models can be made executable on their own, and they can be shared between
applications in an open-world setting such as the Semantic Web. This encourages
reuse and inter-operability. Also, in order to build high-quality models, formal editing
support such as reasoners are essential. Maintaining large quality ontologies without
support by a reasoner quickly becomes impossible [9]. Therefore, MDA languages
should strengthen their formal foundation, and they should become better executable.

As a consequence of these observations, a goal in future work should be to further
leverage the role of declarative domain models in executable systems. Revisiting
the architecture diagram from Figure 2, the goal would be to reduce the size of the
“Java” boxes, and to increase the importance of the transformation arrows. With
the availability of more expressive rule languages, it should be possible to encode a
much bigger part of the application logic in formal, declarative models. At least, rules
could be used for the generation of executable code and test cases. Furthermore, user
interfaces such as input forms for customer data could be automatically generated
from ontological structures. This has been shown by systems like Protégé, where
flexible user interface are generated from class definitions.

References

[1] Franz Baader, Diego Calvanese, Deborah McGuineness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook. Cambridge University
Press, 2003.

Shttp://www.omg.org/ontology

www.manaraa.com

[2] Kent Beck. Extreme Programming Ezxplained: Embrace Change. Addison-Wesley,
Reading, MA, 1999.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34-43, 2001.

[4] Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, and Bran Selic.
An MDA Manifesto. MDA Journal, May http://www.bptrends.com/search.
cfm?keyword=MDA+Journal&gogo=1, 2004.

[5] Vladan Devedzi¢. Understanding ontological engineering. Communications of the
ACM, 45(4):136-144, 2002.

[6] Holger Knublauch. An AT tool for the real world: Knowledge modeling with
Protégé. JavaWorld, June 20, 2003.

[7] Holger Knublauch. Protégé OWL Plugin tutorial. 7th International
Protégé Conference, Bethesda, MD, http://protege.stanford.edu/plugins/
owl/documentation.html, 2004.

[8] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. The
Protégé OWL Plugin: An open development environment for semantic web appli-
cations. In 3rd International Semantic Web Conference (ISWC' 2004), Hiroshima,
Japan, 2004.

[9] Alan Rector. Description logics in medical informatics. Chapter in [1].

[10] World Wide Web Consortium. OWL Web Ontology Language Reference. W3C
Recommendation 10 Feb, 2004.

ol Lalu Zyl_ﬂbl

www.manharaa.com

